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Abstract: The relation among microstructure and fatigue behavior of 2205/316L stainless steel

dissimilar welded joints was investigated. Plates of 6.35 mm in thickness with a single-V joint

configuration were gas metal arc welded (GMAW) in a single pass by feeding at 6 m/min an ER2209

filler wire with a heat input of 1.2 kJ/mm. Grain growth in the high temperature-heat affected zone

(HT-HAZ) occurred mostly at the mid-height of the plates, delimiting the width of this region up

to ~1.28 and ~0.73 mm of the 2205 and 316L plates, respectively. Dilution of the 316L plate with

the ER2209 filler altered the solidification mode in this side of the weld and led to a significant

content of austenite along the fusion line. Fatigue tests were performed using sinusoidal waveform

at room temperature applying uniaxial cyclic loading, between constant stress limits within the

elastic deformation of tension and compression (∆σ) with stress ratio R = −0.3. With stress ranges

of 98% and 95% the fatigue specimens rapidly failed in much less than 106 cycles. The failure crack

initiated at the surface of the 316L in the HT-HAZ near the weld toe. Surface analyses of unbroken

specimens before and after fatigue testing revealed a significant increment in roughness of the 316L

base material owing to the formation of intrusions and extrusions.

Keywords: dissimilar welded joints; 316L austenitic stainless steel; 2205 duplex stainless steel; fatigue

life; GMAW

1. Introduction

Engineers face the need to join different alloys to optimize the design and exploiting
the individual characteristics of the new materials. Welding of dissimilar materials has
increased considerably in the industry due to the great benefits that include improvements
in design flexibility and cost reduction. In order to take advantage of the assets of alloys
with distinct characteristics, dissimilar welding provides a viable alternative for the best
performance in service. However, it is very important to make an appropriate selection of
the filler metal and welding process to achieve this goal [1–7].

In virtue of the different nature of the applications, the study of the mechanical
properties of stainless steels, either quasi-static or dynamics, are topics of great scientific and
technological relevance. The most popular and versatile method for joining components
and assembling rigs at an industrial level is arc fusion welding. However, the heat input
of the process gives rise to localized heterogeneities in the microstructure and mechanical
properties of the base metal (BM), weld metal (WM) and heat affected zone (HAZ), leading
to a complex mechanical behavior of the welded component when subjected to different
loads. The mechanical strength of the welded joints represents a very important factor in
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the estimation of the useful life of containers and pressurized pipes, which determines the
resistance of the entire structure. In most of the cases, the failure of welded joints induced
by fatigue starts at the toe of the weld bead, and the failure is caused by the propagation of
semi-elliptical cracks on the surface and propagates across the base material [8,9].

Duplex stainless steels (DSSs) have been successfully used in oil pipelines, gas fuel,
chemical, petrochemical and marine transportations as well as in power generation plants
due to their excellent mechanical properties and resistance to crevice and pitting cor-
rosion. This class of alloys is approximately 1.5 times more resistant than common
austenitic stainless steels owing to the approximate 50/50 ratio of ferrite (δ) and austenite
(γ) phases present in their microstructure. DSSs are very attractive to the industry due
to its cost/properties ratio because the lower content of nickel as compared to austenitic
grades, saves between 70 and 210 kg of Ni per metric ton of steel [2]. In the counterpart,
316L austenitic stainless steel (ASS) is widely used in a vast number of applications because
it has good resistance to creep and fatigue properties making it a suitable candidate as
a structural material with good corrosion resistance [10]. Due to the constant operation
under extreme demand and the periodic routine maintenance carried out in the oil, gas,
power plants or aircraft engines, all together contribute to their components experiencing
fatigue [11].

The use of stainless steels with low carbon grade, like 316L, extends the time available
before chromium carbide precipitation begins during cooling in secondary processing like
welding, but this does not mean that 316L will be immune to sensitization during long-term
exposure in the critical temperature range of 500–800 ◦C in service [12,13]. Even with the
reduction in carbon content, when 316L is exposed to high temperatures, it is susceptible
to experiencing various metallurgical problems (e.g., precipitation of detrimental phases).
In addition, excessive heat input during arc fusion welding may extend the time at high
temperature in the HAZ (>500 ◦C) increasing the likelihood of intermetallic sigma (σ),
chi (χ) and Laves (η) phases precipitating along with undesirable carbides of the type
M23C6 [5,10,14–16].

According to a number of reports [17–19], ASSs represent between 60 to 75 percent of
the total usage of corrosion resistant metallic materials. Structural applications of a variety
of components demand a better understanding of their mechanical behavior because
most of the breaks down occur due to fatigue. When the weld metal solidifies and cools
down to room temperature, it contracts resulting in a state of high residual tensile stresses,
while in the base metal compression residual stresses are induced. In this manner, arc
fusion welding alters the fatigue crack propagation characteristics in a welded joint as a
consequence of these residual stresses [19].

Engineering structures around the world are commonly subjected to a wide range of
distinct loading conditions, including, but not limited to, cyclical loads due to operating
conditions, secondary loads due to residual stresses as well as static charges by their own
weight. In the design of components that undergo cyclic loads, the prediction of fatigue
life and industrial safety are very important and complex [20,21]. Due to the complicated
nature and the large number of factors that influence fatigue life, up to today, there is not a
unified approach available that can treat all fatigue problems. An additional concern relies
on the fact that engineering components may contain manufacturing defects and quite
often the geometric discontinuities in the surface are the starting points in failures due to
low cycle fatigue [22].

Recent studies of the mechanical strength of 2205/316L stainless steels dissimilar
welded joints have shown that the specimens fail in the side of the 316L ASS [2,3,6,23–26].
When a DSS filler wire is used for welding, the mechanical strength in the welded zone
is higher as compared to the monolithic 316L ASS. This may be due to differences in
the chemical composition that promote the dual-phase nature and a stronger solid solu-
tion strengthening mechanism as mentioned in some publications [2,3,6,23]. The fatigue
damage in grains of 2205 DSS and 316L ASS results in the formation of persistent slip
markings consisting of extrusions and intrusions, which are very important features of
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early fatigue damage of polycrystalline materials because fatigue cracks nucleate at these
locations [27–29]. In this scenario, the objective of this study is to evaluate the fatigue life
of the 2205/316L stainless steel dissimilar welded joints.

2. Materials and Methods

2.1. Materials and Welding

The rectangular plates employed in this study were 2205 DSS (UNS 31803) and 316L
ASS (UNS S31603) with dimensions of 150 mm by 70 mm by 6.35 mm. The plates were
machined to a single-V groove butt joint configuration as shown in Figure 1a. Table 1
shows the chemical composition of the stainless steel plates and filler according to the
suppliers. These compositions were confirmed by optical emission spectrometry analysis
(Q4 TASMAN, Bruker AXS GmbH, Karlsruhe, Germany). The last column of Table 1
also shows the Creq/Nieq ratio as calculated based on the WRC-1992 diagram [30]. The
thermo-mechanical data sheet of the suppliers reported that the plates were processed with
a solution annealing treatment at 1050 ◦C for 5 min followed by water quenching.

Figure 1. (a) single-V groove joint design, (b) schematic representation of specimens machined from

the dissimilar welded joint for metallurgical and mechanical characterization and (c) dimensions of

fatigue specimens (mm).

Table 1. Chemical composition of the stainless steel plates and filler wire employed (wt.%) and Creq/Nieq ratio based on

the WRC-1992 diagram [30].

Material C Cr Ni Mo Mn P S Si N Cu Nb Fe Creq Nieq Creq/Nieq

2205 0.01 22.5 5.7 3.1 1.81 0.03 ---- 0.54 0.16 0.21 0.03 Bal. 25.60 9.30 2.75
316L 0.02 16.6 10.0 2.0 1.15 0.03 ---- 0.54 0.05 0.46 0.03 Bal. 18.71 11.86 1.57

ER2209 0.01 23 8.8 3.2 1.75 0.02 0.01 0.5 0.14 0.1 0.02 Bal. 26.20 12.04 2.17
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The welding process was carried out semi-automatically in a sole welding pass, normal
to the rolling direction of the plates in the as-received condition, using the gas metal arc
welding (GMAW) process with direct current electrode positive. An AWS ER2209 filler
wire of 1.2 mm in diameter was fed at 6 m/min shielded with a special gas mixture AWS
SG-ANO-3/2 (95% Ar + 3% N2 + 2% O2) flowing at 18.8 L/min. The torch was displaced
normal to the plates at 3.6 mm/s with a stick out of 10 mm. The welding parameters were
24 V and 240 A to restrict the heat input to 1.2 kJ/mm considering an efficiency of 75% for
the GMAW process [31].

2.2. Microstructural Characterization

A sample was taken for microstructural characterization as shown in Figure 1b. Scan-
ning electron microscopy (SEM, JSM 6400, Jeol Ltd., Tokio, Japan) and optical microscopy
(OM, Zeiss Axio Observer 7 Materials, Carl Zeiss Microscopy, Oberkochen, Germany) were
used to characterize the microstructure of the welded joints. Standard metallographic
techniques were used for grinding and polishing the samples whereas chemical etching
with Glyceregia reagent (15 mL HCl + 10 mL Glycerol + 5 mL HNO3) was carried out.
Besides, color metallography with Beraha’s tint etch was made by dipping the sample
into solutions of 10 mL HCl + 90 mL water + 0.03 g K2S2O5 + 0.02 g NH4FHF and 20 mL
HCl + 80 mL water + 0.03 g K2S2O5 + 0.02 g NH4FHF to color ferrite and austenite, re-
spectively. The solutions were at room temperature and the immersion of the sample into
the solutions lasted for up to 120 s. The color produced by these etchants varies with
the composition and may be different depending on the phase orientation, temperature,
time, alloy composition and treatment, making color discrimination somewhat unreliable
unless conditions are rigorously controlled [32]. Area measurements, weld metal dilution
and phase quantifications were carried out using image analysis software (SigmaScan Pro,
Version 5.0, Systat Software Inc., San Jose, CA, USA). Chemical compositional analyses
were performed in the SEM by energy dispersive X-ray spectroscopy (EDX, XFlash Detector
6|10, Bruker AXS GmbH, Berlin, Germany).

Scanning of the transverse profile of the welded joint was performed with a Fischer
Feritoscope FMP30 (Helmut Fischer GmbH, Sindelfingen, Germany). The instrument was
calibrated with standards prior to measuring. A map of the ferrite variation was made
by measuring the ferrite percentage in an area of 5 mm by 23 mm in height and length,
respectively, composed by 6 horizontal lines, each one containing 24 punctual measure-
ments separated 1 mm between them. In the weld reinforcement, another horizontal line
of 9 punctual measurements was done. Thus, the scanned area covered the BM, HAZ and
fusion zone (FZ) with 153 punctual measurements.

2.3. Tensile Testing

Tensile tests were performed using a 100 kN Landmark MTS load frame servohy-
draulic testing machine Model 370 (MTS Systems Corporation, Eden Prairie, MN, USA)
and a FlexTest-40 controller with TestSuite Multipurpose Elite Software™ (MTS Systems
Corporation, Eden Prairie, MN, USA). The cross head speed employed was 0.016 mm/s.
Standard sub-size dog bone shape specimens from the as-received base materials and
welded joint were machined, longitudinally to the rolling direction, in a computer numer-
ical control (CNC) milling machine (Viwa S. A. de C. V., VF3KM400, Zapopan, Jalisco,
México), according to the specifications of the ASTM E8-04 standard [33]. The axial defor-
mation was measured during the tests with a MTS 634.31F-24 extensometer with a gauge
length of 20 mm. The weld bead was in the middle of the gauge length of the specimens as
illustrated in Figure 1b. The machined surfaces were ground with SiC emery paper up to
2000-grit in order to reduce surface imperfections and roughness in the gauge length. The
yield stress was determined using the 0.2% offset criterion. Average Vickers microhardness
values were measured with a computer controlled Mitutoyo HM-220B Vickers microhard-
ness tester in the base materials by applying a load of 100 g during 15 s (Mitutoyo America
Corporation, IL, USA).
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2.4. Fatigue Testing

The CNC precision machining of the fatigue specimens from the dissimilar welded
joint was carried out according to the dimensions and geometry specified by the ASTM
E466-96 standard [34] as shown in Figure 1c. The depth of milling was reduced when the
final dimensions of the specimens approached in order to avoid the possible introduction
of residual stresses during machining. The fatigue specimens were mirror-like polished,
excepting the grip sections, longitudinally to the rolling direction to eliminate machin-
ing imperfections and reduce roughness. Accurate data average surface roughness (Ra)
measurements of fatigue specimens were made using a NANOVEA PS50 3D non-contact
optical profilometer (NANOVEA, Division of Micro Photonics Inc., Irving, CA, USA).

The fatigue life behavior of the 2205/316L stainless steel dissimilar welded joint was
studied by performing cyclic tests in atmospheric air and at room temperature using a MTS
load frame servohydraulic testing machine Model 370 (MTS Systems Corporation, Eden
Prairie, MN, USA). The fatigue tests were conducted using a stress ratio, R = σmin/σmax, of
−0.3 and the loading was uniaxially applied using a sinusoidal waveform at 15 Hz. The
absolute value of the compression stress does not exceed 30% of the average σy recorded
from the tensile test of the dissimilar welded joint to avoid buckling of the specimens when
performing the fatigue test.

Finally, fractography was made on specimens that failed due to fatigue in order
to observe the appearance of the fracture surface, fatigue crack initiation zones and its
subsequent propagation using a SEM equipped with an EDX analyzer. The surface of
non-broken fatigue specimens was also characterized.

3. Results and Discussion

3.1. Microstructure of the Base Materials

Optical micrographs of the base materials in the rolling direction are shown in Figure 2.
In Figure 2a the microstructure of the 2205 DSS consists of elongated grains of ferrite as
the dark phase and austenite as the bright phase, with an approximate fraction of 46 and
54%, respectively. In Figure 2b, the microstructure of the 316L presents equiaxed grains of
austenite with a grain size of 15.11 ± 5.73 µm. Moreover, it can be observed the twining
produced by the applied mechanical shear forces during conformation of the 316L ASS
into plates [35].

Figure 2. Microstructure of the as-received base materials; (a) 2205 duplex stainless steel (DSS) and

(b) 316L austenitic stainless steel (ASS).

3.2. Macro and Microstructural Characteristics of the Welded Joint

Figure 3a shows a macro-view of the cross-section of the dissimilar welded joint
obtained by assembling optical micrographs, the white circle shows the area analyzed by
EDX in the SEM. The macrograph exhibits full penetration throughout the height in both
sides of the plates without lack of lateral fusion, no macroporosity and neither cracks are
visible to the naked eye. It is possible to observe clearly the morphology and the extension
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of the weld bead, the high temperature heat affected zone (HT-HAZ) and base materials.
The geometrical cross-sectional area measurements and the calculation of the dilution
ratios are given in Table 2. The 2205 DSS has lower thermal expansion and higher thermal
conductivity coefficients than 316L ASS [12,36]. The dissimilar welded joint shows different
dilution rates in each side due to the difference in thermophysical properties between base
materials, being the dilution of the welded joint approximately 30.65%. The data shown in
Table 2 indicates that the dilution of the 316L BM accounts for 66.66% of the total dilution
of the welded joint. The estimated Creq/Nieq ratio of the fusion zone is 2.12 as calculated
with the aid of the WRC-1992 diagram [30] for the total dilution rate. Figure 3b illustrates
the variation in the content of ferrite across the width of the welded joint as measured
with the ferritescope test. According to this map, the ferrite content in the 2205 BM varies
between 46% to 58% whereas the 316L BM has about 1% ± 0.5%. A significant gradient can
be seen from the HT-HAZ of the 2205 to the HAZ of the 316L ASS. This gradient is related
to the chemical composition of the filler metal and to the levels of dilution in every side of
the weld along with the chemical composition of each base metal. Thus, the map reveals
that in the FZ there is more austenite in the side of the ASS than in the side of the DSS, this
fact is even more accentuated along the fusion line where the content of austenite varies
between 78% to 88%.

Figure 3. (a) transverse profile of the 2205/316L stainless steel dissimilar welded joint and (b) map-

ping of the ferrite content across the welded joint.

Table 2. Dilution ratios and area measurements of the partially melted zone (PMZ) and high

temperature heat affected zones (HT-HAZs).

Material
Area

(mm2)
Dilution

(%)

2205 melted 8.13 10.95
316L melted 14.63 19.70
Weld metal 74.26 30.65
316L PMZ 0.92 ----

2205 HT-HAZ 6.77 ----
316L HT-HAZ 5.05 ----

Figure 4 presents some details of the microstructure at the fusion line in both sides of
the welded joint. The interface at the 2205 DSS side is shown in Figure 4a,b, it can be seen
that the microstructure of the FZ consists of a continuous network of austenitic grains in the
form of Widmanstätten plates embedded in a matrix of ferrite. Both, the 2205 DSS and the
FZ obey the ferrite (F) mode of solidification (L → L+ δ→δ→δ + γ), where “L” is liquid, “δ”
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is delta ferrite and “γ” is austenite [30,37,38]. The weld metal solidifies from the partially
melted coarse ferritic grains of the 2205 HT-HAZ. An estimation of the contents of phases
at the center of the FZ by area fraction measurements drew approximately 33.5% ± 3.9%
and 66.4% ± 3.9% of ferrite and austenite, respectively, in good agreement with the map
of Figure 3b. The content of austenite in the FZ is abundant owing to the high content of
gammagenous elements in the metallurgical design of the filler wire and the nitrogen in the
shielding gas. It is a common practice to add nitrogen into the shielding gas to favor the
formation of austenite and to compensate for possible losses of nitrogen during welding of
DSS [39,40]. Due to these aspects, the approximate 50/50 balance between the two phases
is not obtained in this zone.

Figure 4. Microstructural characteristics of the weld at the fusion line; (a,b) side of the 2205 DSS and

(c,d) side of the 316L ASS.

In addition, Figure 4a,b also exhibit large ferritic grains delimiting the width of the
2205 HT-HAZ which extends up to ~1.28 mm. This zone corresponds to the region adjacent
to the fusion line where the peak temperatures reached during welding virtually dissolved
the pre-existing austenite in the 2205 BM and promoted grain growth in the ferritic matrix.
During cooling, austenite began to form in the boundaries of the coarsened grains of
ferrite along with Widmanstätten and some intragranular austenite. Partially transformed
austenite is also present. The microstructure at the 2205 HT-HAZ is a serious concern in
terms of corrosion resistance and also it changes the mechanical properties as compared
with the microstructure of the as-received 2205 plates [41,42].

In the counterpart, Figure 4c,d correspond to the side of the welded joint where failure
initiation took place in fatigue testing. In Figure 4c partial coarsening of the austenitic
grains mark the limits of the HT-HAZ to approximately 0.73 mm whereas in Figure 4d a
partially melted zone (PMZ) is clearly appreciated as part of the HT-HAZ of the 316L base
material. The latter zone is characterized by the presence of δ-ferrite formed at the grain
boundaries because of partial melting and austenite transforming into ferrite. During rapid
heating of the base materials, the grain boundaries generally melt at lower temperatures
than the bulk because there are higher concentration of alloying elements and impurities. If
the grain boundaries are enriched with ferrite former elements or are low in gammagenous
elements, the rapid cooling rates prevent the ferrite–austenite transformation so that some
ferrite is retained at room temperature. Thus, the vermicular pattern of ferrite is formed
in the grain boundaries in the PMZ of the 316L ASS during the welding thermal cycle.
The optical micrograph also reveals plenty of ferrite stringers aligned along the rolling
direction, resulting from the segregation of ferritizer elements like Cr and Mo. Ferrite
is rich in these elements and might induce the formation of Cr-rich brittle phases and
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depleted zones providing favorable sites for pitting and uniform corrosion when the
steel is exposed to corrosive environments [7,43–45]. Regarding the FZ in this side of
the weld, the microstructure is somehow different to the 2205/2209 interface. This is
readily explained by considering the dilution rates at each side of the weld, the calculated
Creq/Nieq ratios are 2.5 and 2.05 for the 2205/2209 and 2209/316L interfaces, respectively.
The partially melted grains of austenite act as substrates for nucleation and growth of
ferrite during freezing of the weld pool. According to the WRC-1992 diagram and due
to the Creq/Nieq ratio, precipitation of austenite occurs immediately and restricts the
coarse columnar growth in the vicinity of the 316L/2209 interface. Approximately 200 µm
beyond the fusion line, columnar grain growth prevails toward the heat source. Moreover,
Figure 4d shows grains of austenite nucleating and growing from the partially melted
grains of the 316L BM suggesting that local variations in the composition of the melt close
to the fusion line enable competitive growth between ferrite and austenite due to uneven
mixture between the molten filler and base material dragged into the weld pool. These
microstructural observations correlate very well with the ferrite map of Figure 3b.

Optical microscopy and secondary electron (SE) mode imaging in the SEM along
with EDX punctual analyses were performed to characterize, in detail, the microstructural
features of the FZ and PMZ near the fusion line in the side of the 316L ASS as shown in
Figure 5. Figure 5a,b exhibit the precipitation of δ-ferrite stringers and the grain growth of
the austenitic matrix mainly occurring at the mid-height of the 316L plates. According to
Table 2, even with the low content of Nb and C in the 316L stainless steel, thermodynamics
suggests the presence of niobium carbides which might explain the limited grain growth
in the HAZ of the 316L BM. The micrographs of Figure 5c,d present vermicular ferrite at
the 316L PMZ along with δ stringers whereas Figure 5e,f show in detail the ferritic matrix
crowded by austenite. The EDX punctual chemical analyses shown in Figure 6 correspond
to the arrows and labels indicated in the SE image of Figure 5f.

Figure 5. Details of the microstructure as seen in the optical microscope (OM) and the SEM at the

side of the 316L ASS. (a,b) 2209/316L interface, (c,d) PMZ of the 316L and (e,f) weld metal.
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Figure 6. Elemental EDX spectrums and compositions of ferrite and austenite at the weld metal as

indicated by the arrows in Figure 5f.

The ferrite of the FZ is richer in Mo and Cr as compared to austenite which is char-
acterized by the larger content of Fe and Ni according to the semi-quantitative analyses
of the EDX spectra. Most filler metals for duplex alloys have relatively high Mo contents,
to assure the corrosion resistance of the weld metal, but it results in different segregation
degrees of Mo, increasing the tendency to form detrimental intermetallic phases [46,47].

3.3. Mechanical Strength of the Welded Joint under Tension

Figure 7a shows the representative stress-strain curves of the tensile tests of base
materials 2205 and 316L in the rolling directions in the as-received condition and the curve
of the welded joint. The results of these tests are reported in Table 3 and were used to set
the parameters of the fatigue tests. The stress–strain behavior of the welded specimens
was highly consistent, indicating a sound welded joint. Accordingly, Figure 7b shows the
failure zone of the tensile specimens of the welded joints. The failure mode was ductile and
occurred on the side of the 316L BM, away from the FZ and beyond the HAZ. The 2205
DSS and the welded joint had higher mechanical strength, while the 316L ASS presented a
significantly higher toughness. The tensile strength and the yield stress of the dissimilar
welded joint were higher than the value of the as-received 316L ASS, showing an increase
of approximately 61 and 59 MPa, respectively. This represents a moderate increment of
~9% in the ultimate tensile strength. There was also a notable reduction in ductility of
the welded samples, with an elongation close to that of the 2205 DSS. The precipitation of
ferrite bands as a result of the welding thermal cycle occurred throughout the thickness, but
mainly in the mid height at the HAZ of the 316L plate increasing the mechanical strength
to some extent. This increment is because the ferrite–austenite interphase boundaries
are stronger barriers to dislocation movement in comparison to austenite–austenite grain
boundaries [48–50].

Figure 7. (a) conventional stress versus elongation curves of the base materials and dissimilar welded

joint and (b) macrographs of the dissimilar welded joints after tensile testing.



Metals 2021, 11, 93 10 of 18

Table 3. Mechanical properties of the as-received stainless steel plates and welded joint.

Material
Yield Stress

(MPa)

Tensile
Strength

(MPa)
Elongation (%) HV100

2205 DSS 640 811 38 272
316L ASS 384 674 55 215
ER2209 560 690 26 240

Welded joint 443 735 31 —-

3.4. Fatigue Behavior

From the results of the mechanical properties under tension of the dissimilar welded
joint, the parameters of the fatigue test were calculated and are given in Table 4. The
highest stress range was 98% of the value of the maximum yield stress of the dissimilar
welded joint, σy = 443 MPa, according to Table 3, this stress is slightly above the value
of the as-received 316L BM. The results of the fatigue tests are plotted in Figure 8. The
stress range (∆σ) must be at least 95% for the fatigue specimens to fail without reaching
106 cycles. Specimen three did not fail for 90% of the ∆σ, reaching 106 cycles, likewise, the
dissimilar welded joint did not fail at 68% of the ∆σ, reaching up to 1,884,110 cycles.

Table 4. Parameters and results of the fatigue tests of the 2205/316L dissimilar welded joint.

Specimen
∆σ

[%]
Tensionσmáx

[MPa]

Compression
σmin

[MPa]

∆σ

[MPa]
Nf

[Cycles]
Time

[h]
Surface Crack Initiation

1 98 434 −130 564 18,246 0.33 HT-HAZ 316L
2 95 420 −126 547 41,400 0.76 HT-HAZ 316L
3 90 398 −119 518 1,000,320 18.5 Without failure
4 69 306 −92 398 1,884,110 34.9 Without failure

Figure 8. S-N diagram of the 2205/316L stainless steel dissimilar welded joint.

It is known that ASSs can begin to deform upon 40% of the yield strength [13]. In
general, the mechanical behavior of less than half the yield strength is considered totally
elastic, and the plastic deformation is considered insignificant when the applied stress is
below two-thirds of the yield strength. This quasi-elastic behavior is a consequence of the
12 sliding systems of austenite with a face-centered cubic (fcc) structure, that is very tough
and ductile even at low temperature [13]. Due to the quasi-elastic behavior of the 316L
ASS, a large ∆σ needs to be applied generating crack initiation sites and leading to rapid
rupture at low number of cycles, less than 106 [51].

In the fatigue tests, the cracks consistently initiated at the surface of the 316L base
metal as shown in the macrographs of Figure 9. The images of Figure 9a,b were obtained
after electropolishing and Behara’s tint etching whilst for Figure 9c,d the samples were
mounted in epoxy resin, ground, polished and, finally, etched with Behara’s reagent. For
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both stress ranges, the failure crack nucleated very close to the weld toe, as pointed by
the arrows in Figure 9a,b, and then propagated through the thickness of the 316L. The
fatigue crack propagation in ASSs is favored mainly along {111} planes until it arrives at an
adjacent grain of distinct crystallographic orientation. The crack is then forced to change its
propagation direction to a favorably oriented plane [52]. The etching of the samples in the
macrographs in the left side of Figure 9 preserved the damage suffered on the surface by
the specimens during fatigue testing. The accumulation of damage observed in the broken
specimens suggests that some level of hardening was induced by the welding thermal
cycle in the HAZ of the 316L alloy as the right side of the fatigued samples exhibit more
damage beyond certain distance from the fracture. Besides, it is evident the reinforcement
provided by the toe of the weld bead as seen by the greater deformation experienced in the
side of the root and the increase in the signs of damage from top to bottom. Nevertheless,
critical fatigue cracks in welded joints usually occur at the weld toe where the thermal
affection gives rise to coarsening of the grains and residual stresses which are maximized
with respect to the rest of the welded joint owing to expansion-contraction effects along
with phase transformations at high temperature. In this instance, the PMZ of the 316L is
likely to predispose the favorable site for cracks nucleation. Fatigue cracks may be readily
produced in this region where the residual stress transverse to the weld toe is typically
positive and might approach the yield stress [53].

Figure 9. Transverse profiles of fatigued specimens for (a,c) 95% and (b,d) 98% of ∆σ.

Figure 10a,c show the overall view of the fractured specimens under fatigue. In
these images, the fractured surfaces exhibit the characteristic mixed-mode of fracture
for fatigued specimens with flat and slant relieves. Figure 10b,d show the edges of the
fractures and polished surfaces of the specimens tested. The short river patterns of the
fractured surface exhibit the location where the cracks nucleated at sites of high-stress
concentration. The black arrows indicate the nucleation site of the crack and the crack
propagation direction follows the three distinctive stages; I, II and III. In stage I, the
initiation of the failure begins with nucleation of the crack on the surface of the specimen
at sites of high-stress concentration, characterized by fragile fracture due to the mechanism
of cleavage or transgranular fracture along crystallographic planes. This may occur in fcc
alloys when subjected to severe conditions like extremely high strain rates or very low
temperatures [54].

Notice the effect of the 3% difference in stress range by the higher density, Figure 10d,
of parallel microcracks in the individual grains of the 316L alloy for the 98% stress range
specimen as compared to the 95% (Figure 10b). The significant level of damage observed
in Figure 9a,b and Figure 10b,d correlates very well with the Nf cycles to failure registered
during fatigue testing of the welded specimens.

Figure 11 shows details of the fracture surface of the 547 MPa stress range sample. In
Figure 11a secondary microcracks are clearly distinguished whereas Figure 11b exhibits
an inclusion pointed by the arrow. Figure 11c shows the EDX spectrum and chemical
composition of the inclusion, which is composed mainly by Ca, Si, S and Al. It is obvious
that this type of inclusions act as high-stress concentrators favoring the initiation and
propagation of cracks during the cycle applied force. Bulk steel production involves
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deoxidation and inoculation by adding these elements, which act as multiple nucleation
sites promoting grain refinement [36]. The content, size and even interconnectivity of these
inclusions in stainless steels, might significantly reduce high-cycle fatigue strength by the
nucleation of microcracks and their eventual coalescence [54,55]. In this study, however,
the experimental evidence shows that these particles did not play a major role in dictating
the fatigue life of the 2205/316L stainless steel dissimilar welded joint.

Figure 10. General view of the fracture of fatigue specimens and site of fracture initiation; (a,b) 547 MPa

(95%) and (c,d) 564 MPa (98%) stress range.

Figure 11. Details of the fracture of the 547 MPa stress range sample. (a) secondary microcracks,

(b) microvoid and (c) EDX spectra and composition corresponding to the inclusion indicated by the

arrow in (b).
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In stage II, the propagation front of the crack in a brittle mode varies with the stress
range, as a result of each loading cycle. For instance, in Figure 12a, the spaces between
striations taken at a distance about 566 µm from the crack initiation are 2.39 ± 0.44 µm,
which commonly correspond to individual loading cycles. Figure 12b,c show the crack
propagation in a pattern of beach marks characteristic of crack growth due to fatigue
fracture at different periods. The space between crack progression marks in Figure 12b is
11.78 ± 0.88 µm, whilst in Figure 12c at 2.8 mm from the crack initiation, the spacing is
significantly larger, in the order of 142.20 ± 0.33 µm.

Figure 12. Details of the fracture of the 547 MPa stress range sample; (a) fatigue striations, (b,c) beach

patterns, (d–f) parabolic-shaped dimples and (e) set of shear lip.

Stage III is the final failure characterized by regions of fast-fracture mode with evidence
of oblique plastic deformation. In Figure 12d it can be observed a shear lip formed on the
lateral surface at approximately 45◦ to the loading direction, as an indication of partially
ductile fracture.

Fracture toughness depends on the material thickness; nonetheless, the characteristics
of the fracture surfaces are both, plane stress and plane strain. From Figure 12d–f, it can be
observed that striations do not appear because rapid failure prevails, but parabolic-shaped
dimples appear at the surface of shear lip resulting from shear failure.

Fatigue cracks are initiated at heterogeneous nucleation sites due to different causes
like preexistent flaws within the material, dense bands of highly localized slip generated
during the cyclic straining process or weld imperfections such as incomplete fusion, poros-
ity and slag inclusions. In addition, the residual stresses caused by thermal expansion
during the welding process and its subsequent contraction during solidification, all may
contribute to poor fatigue performance of welded joints [54,56–58].

Figures 13 and 14 present details of the surface features of the unbroken fatigued
specimen 4 where the stress range was relatively low, ∆σ = 69%, giving the conditions so
that slip bands were generated, and strain took place without nucleating any cracks that
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could induce failure. In the macrograph of Figure 13a, a relief is pointed along the top
surface of the welded joint, between the weld toe and the 316L BM. The apparition of this
crevice was typical during the fatigue essays, it appeared soon after certain number of
cycles depending on the stress range.

Figure 13. Surface features of unbroken fatigued specimen; (a) macrograph of the fatigue specimen,

(b) SEM view of the fusion line at the side of the 316L ASS and (c) surface detail at the HT-HAZ of

the 316L ASS.

Figure 14. Surface features of unbroken fatigued specimen of the fusion line at the side of the 316L

ASS, (a) three-dimensional view and (b) roughness profile, roughness after fatigue testing (Raf).

The SEM images shown in Figure 13b,c show, in detail, topographic characteristics
of the relief as seen by local elevations and depressions, as extrusions and intrusions,
respectively, on the surface of the HT-HAZ of the 316L ASS. These features represent the
first sign of fatigue damage which might lead to fatigue crack initiation in specimens under
fatigue loading [59]. In polycrystalline metals and alloys, persistent slip bands generated
during the cyclic straining process serve as fatigue crack nucleation sites. The intrusions are
crack-like defects where fatigue cracks initiate [54,60]. A pronounced plastic deformation
relief formed on the surface of 316L HT-HAZ with ~300 µm in width, 12.88 µm in depth
and a volume of 0.05 mm3, as can be appreciated in detail in Figure 14.

Experimental evidence reveals that there is a large increase in average roughness after
fatigue testing (Raf) of the 316L surface. Figure 15 shows roughness profiles of a fatigue
specimen before and after testing. Notably, the 316L ASS exhibits the major increase in
roughness, from Ra = 0.155 to Raf = 1.071 µm whereas the FZ and the 2205 BM did not
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change so significantly in surface roughness. Cracks nucleate at the surface of the 316L
HT-HAZ and grow normal to the rolling direction, into the interior of the specimens.

Figure 15. Roughness profile of unbroken specimen before and after fatigue testing, average surface

roughness (Ra) and Raf, respectively.

4. Conclusions

This study investigated the fatigue life of the 2205/316L stainless steel dissimilar
welded joint and based on the experimental results, the following conclusions are drawn:

The dissimilar welded joint experienced different dilution behavior at each BM due
to differences in the thermophysical properties between DSS and ASS. The 316L plate
contributed with 2/3 of the total dilution of the welded joint. The FZ in the side of the
DSS obeyed the typical ferrite mode of solidification for these type of alloys followed by
precipitation of austenite during cooling whereas in the side of the ASS, the dilution rate
between the 2209 filler and the 316L ASS gave rise to a notably different microstructure.
Growing of ferrite appears to compete with austenite along the fusion line, both nucleating
from partially melted grains of the 316L base metal. The dilution rate and this mode of
solidification significantly increased the content of austenite to values between 78% to 88%
in this side of the FZ as corroborated with feritscope measurements.

The HAZ of the 316L ASS exhibited limited grain growth presumably owing to the
presence of NbC particles. As a consequence of the welding thermal cycle, the HAZ was
characterized by a band of partially melted grains with vermicular ferrite allocated in the
grain boundaries and the content of ferrite increased in the BM due to precipitation of ferrite
stringers. The favored diffusivity of Mo into this phase contributed to this microstructural
alteration.

The failure of the welded joints under tensile stress consistently occurred in the
316L BM away from the FZ and HAZ with a strength moderately above (~9%) of the
as-received 316L ASS. This is thought to be due to some hardening mechanism induced by
the precipitation of more ferrite in the BM as ferrite–austenite interphases are stronger than
austenite–austenite interphases, increasing thus strength and displacing away the zone
susceptible to failure.

According to the S-N diagram for the 2205/316L stainless steel dissimilar welded
joint, the tension-compression fatigue tests must be at least ∆σ = 547 MPa to fail without
reaching 106 cycles. Rupture of the welded joint under fatigue occurred also in the HAZ of
the 316L BM and initiated very near to the weld toe.

Fractography in the SEM revealed typical flat and slant fracture surfaces with failure
occurring in three stages. Surface characterization of the fatigue specimen by SEM and
profilometry before and after testing, at a stress range of 398 MPa, revealed a significant
increased in surface roughness of the 316L BM and the presence of multiple microcracks.
The change in the texture of the surface was due to the formation of intrusions and
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extrusions. Surprisingly, in spite of the multiple microcracks seen, this specimen did not
fail after 1,884,110 fatigue cycles.

Regarding the findings of this study, although a sound 2205/316L stainless steel
dissimilar welded joint is obtained, care must be taken in not to demand more than 90% of
the stress range under cyclic loading. If the fatigue life of the dissimilar welded joint is to
be increased, the heat input must be decreased, either by modifying the joint design or by
using a different transfer mode during welding. This would change the geometry of the
weld bead and decrease residual stresses.
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43. Kožuh, S.; Gojić, M.; Vrsalović, L.; Ivković, B. Corrosion failure and microstructure analysis of AISI 316L stainless steels for ship

pipeline before and after welding. Kovove Mater. 2013, 51, 53–61.

44. Mohammed, R.; Rao, K.S.; Reddy, G.M. Studies on microstructure, mechanical and pitting corrosion behaviour of similar and

dissimilar stainless steel gas tungsten arc welds. In Proceedings of IOP Conference Series: Materials Science and Engineering; IOP

Publishing: Bristol, UK, 2018; p. 012028.

45. Dadfar, M.; Fathi, M.; Karimzadeh, F.; Dadfar, M.; Saatchi, A. Effect of TIG welding on corrosion behavior of 316L stainless steel.

Mater. Lett. 2007, 61, 2343–2346. [CrossRef]

http://doi.org/10.1016/0026-0800(80)90010-5
http://doi.org/10.1007/BF02586155
http://doi.org/10.1016/j.ijpvp.2005.07.007
http://doi.org/10.1080/10426914.2014.994760
http://doi.org/10.3390/met7020039
http://doi.org/10.3390/ma12182906
http://doi.org/10.3390/ma13132930
http://doi.org/10.1016/j.matchemphys.2005.08.077
http://doi.org/10.1080/14786430902917616
http://doi.org/10.1016/S1006-706X(11)60117-9
http://doi.org/10.1007/BF02650298
http://doi.org/10.1007/s10853-008-3098-8
http://doi.org/10.1007/s40194-014-0199-7
http://doi.org/10.1590/1516-1439.302014
http://doi.org/10.1016/j.matchar.2007.03.004
http://doi.org/10.1016/j.matlet.2006.09.008


Metals 2021, 11, 93 18 of 18

46. Potgieter, J.; Olubambi, P.; Cornish, L.; Machio, C.; Sherif, E.-S.M. Influence of nickel additions on the corrosion behaviour of low

nitrogen 22% Cr series duplex stainless steels. Corros. Sci. 2008, 50, 2572–2579. [CrossRef]

47. Hao, Y.; Li, J.; Li, X.; Liu, W.; Cao, G.; Li, C.; Liu, Z. Influences of cooling rates on solidification and segregation characteristics of

Fe-Cr-Ni-Mo-N super austenitic stainless steel. J. Mater. Process. Technol. 2020, 275, 116326. [CrossRef]

48. Astaf’ev, A.A.; Lepekhina, L.I.; Batieva, N.M. Effect of delta-ferrite on the properties of welded joints of steel 08Kh18N10T. Met.

Sci. Heat. Treat. 1989, 31, 880–884. [CrossRef]

49. Nitronic, M.L.J. Regression analysis of the influence of a chemical composition on the mechanical properties of the steel nitronic

60. Mater. Tehnol. 2014, 48, 433–437.

50. Almaida, G.; Mirsada, O.; Sulejman, M. Effect of the delta-ferrite content on the tensile proferties in nitronic 60 steel at room

temperature and 750. Mater. Technol. 2012, 46, 519–523.

51. Huang, J.-Y.; Yeh, J.-J.; Jeng, S.-L.; Chen, C.-Y.; Kuo, R.-C. High-cycle fatigue behavior of type 316L stainless steel. Mater. Trans.

2006, 47, 409–417. [CrossRef]

52. Kusko, C.; Dupont, J.; Marder, A. The influence of microstructure on fatigue crack propagation behavior of stainless steel welds.

Weld. J. 2004, 83, 6–14.

53. Campbell, F.C. Fatigue and Fracture: Understanding the Basics; ASM International: Almere, Amsterdam, 2012.

54. Hertzberg, R.W. Deformation and Fracture Mechanics of Engineering Materials; John Wiley Sons Inc.: Hoboken, NJ, USA, 1989.

55. Marshall, P. Austenitic Stainless Steels: Microstructure and Mechanical Properties; Springer Science & Business Media: Berlin/

Heidelberg, Germany, 1984.

56. Macdonald, K. Fracture and Fatigue of Welded Joints and Structures; Elsevier: Amsterdam, The Netherlands, 2011.

57. Zhao, X.H.; Liu, Y. Modification of plasma spurt spraying on improving fatigue property of welded joint. In Proceedings of Applied

Mechanics and Materials; Trans Tech Publications Ltd.: Zürich, Switzerland; pp. 494–497.

58. Lefebvre, F.; Peyrac, C.; Elbel, G.; Revilla-Gomez, C.; Verdu, C.; Buffière, J.-Y. Understanding of fatigue strength improvement of

steel structures by hammer peening treatment. Proc. Eng. 2015, 133, 454–464. [CrossRef]

59. Man, J.; Valtr, M.; Weidner, A.; Petrenec, M.; Obrtlík, K.; Polák, J. AFM study of surface relief evolution in 316L steel fatigued at

low and high temperatures. Proc. Eng. 2010, 2, 1625–1633. [CrossRef]

60. Cortés-Cervantes, I.S.; López-Morelos, V.H.; Miyashita, Y.; García-Hernández, R.; Ruiz-Marines, A.; Garcia-Renteria, M.A. Fatigue

resistance of AL6XN super-austenitic stainless steel welded with electromagnetic interaction of low intensity during GMAW.

Inter. J. Adv. Manuf. Technol. 2018, 99, 2849–2862. [CrossRef]

http://doi.org/10.1016/j.corsci.2008.05.023
http://doi.org/10.1016/j.jmatprotec.2019.116326
http://doi.org/10.1007/BF00798229
http://doi.org/10.2320/matertrans.47.409
http://doi.org/10.1016/j.proeng.2015.12.615
http://doi.org/10.1016/j.proeng.2010.03.175
http://doi.org/10.1007/s00170-018-2666-6

	Introduction 
	Materials and Methods 
	Materials and Welding 
	Microstructural Characterization 
	Tensile Testing 
	Fatigue Testing 

	Results and Discussion 
	Microstructure of the Base Materials 
	Macro and Microstructural Characteristics of the Welded Joint 
	Mechanical Strength of the Welded Joint under Tension 
	Fatigue Behavior 

	Conclusions 
	References

